Enzyme affinity to cell types in wheat straw (Triticum aestivum L.) before and after hydrothermal pretreatment

نویسندگان

  • Mads AT Hansen
  • Budi J Hidayat
  • Kit K Mogensen
  • Martin D Jeppesen
  • Bodil Jørgensen
  • Katja S Johansen
  • Lisbeth G Thygesen
چکیده

BACKGROUND Wheat straw used for bioethanol production varies in enzymatic digestibility according to chemical structure and composition of cell walls and tissues. In this work, the two biologically different wheat straw organs, leaves and stems, are described together with the effects of hydrothermal pretreatment on chemical composition, tissue structure, enzyme adhesion and digestion. To highlight the importance of inherent cell wall characteristics and the diverse effects of mechanical disruption and biochemical degradation, separate leaves and stems were pretreated on lab-scale and their tissue structures maintained mostly intact for image analysis. Finally, samples were enzymatically hydrolysed to correlate digestibility to chemical composition, removal of polymers, tissue composition and disruption, particle size and enzyme adhesion as a result of pretreatment and wax removal. For comparison, industrially pretreated wheat straw from Inbicon A/S was included in all the experiments. RESULTS Within the same range of pretreatment severities, industrial pretreatment resulted in most hemicellulose and epicuticular wax/cutin removal compared to lab-scale pretreated leaves and stems but also in most re-deposition of lignin on the surface. Tissues were furthermore degraded from tissues into individual cells while lab-scale pretreated samples were structurally almost intact. In both raw leaves and stems, endoglucanase and exoglucanase adhered most to parenchyma cells; after pretreatment, to epidermal cells in all the samples. Despite heavy tissue disruption, industrially pretreated samples were not as susceptible to enzymatic digestion as lab-scale pretreated leaves while lab-scale pretreated stems were the least digestible. CONCLUSIONS Despite preferential enzyme adhesion to epidermal cells after hydrothermal pretreatment, our results suggest that the single most important factor determining wheat straw digestibility is the fraction of parenchyma cells rather than effective tissue disruption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Different Types and Amounts of Organic Manure on Soil Physical Properties, Wheat (Triticum aestivum L.) Yield and Correlation between Traits

Manure not only supplies many nutrients for crop production, but it is also a valuable source for increasing soil organic matter content and improving soil structure. To increase organic manure content as well as improve the wheat production adding plant residues and livestock to soil is necessary. The experiment was conducted in Shavoor Research Station to determine seed yield and soil physica...

متن کامل

Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition

Triticum aestivum L. and Zea maize L. are both sensitive to salinity stress which is a major problem faced by farmers today. In the present study, the effect of chitosan, a biologic elicitor under salinity stress was examined on growth parameters and biochemical markers in maize and wheat s...

متن کامل

Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks

BACKGROUND Understanding factors that govern lignocellulosic biomass recalcitrance is a prerequisite for designing efficient 2nd generation biorefining processes. However, the reasons and mechanisms responsible for quantitative differences in enzymatic digestibility of various biomass feedstocks in response to hydrothermal pretreatment at different severities are still not sufficiently understo...

متن کامل

Alkali pretreatment of wheat straw (Triticum aestivum) at boiling temperature for producing a bioethanol precursor.

We evaluated the effect of dilute sodium hydroxide (NaOH) on wheat straw at boiling temperature for removing lignin and increasing the yield of reducing sugar. Various concentrations of NaOH (0.5% to 2%) were used for pretreating wheat straw at 105 °C for 10 min. Scanning electron microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy studies revealed that the 2% NaOH-...

متن کامل

Complete Characterization of Wheat Straw (triticum Aestivum Pbw-343 L. Emend. Fiori & Paol.) – a Renewable Source of Fibres for Pulp and Paper Making

Triticum aestivum PBW-343 is grown in most of the regions of India, and it is one of the renewable sources most suitable for papermaking. Anatomical studies illustrate that vascular bundles near the periphery contain a strong sheath of sclerenchyma cells, which constitutes about 80% of the fibers. The total fibers in wheat straw are about 39.20%, and parenchyma and epidermal cells account for 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013